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On Si nitrid'ing kinetics and mechanisms 

Reaction-sintered Sia N4 has potential applications 
as components in gas turbine engines owing to 
its fabricability and low cost. Considerable re- 
search has been devoted to investigating the 
reaction-sintering kinetics, but an understanding 
of the mechanisms is still far from complete. The 
reason for this is that the reaction-sintering process 
is complex and probably encompasses more than 
a single mechanism. For example, previous investi- 
gators have reported the following kinetic rate 
laws: erratic behaviour [1, 2], linear [3 -5 ] ,  
parabolic [3, 6, 7] ,  logarithmic [1, 3, 6], and 
continuously diminishing kinetics [8, 9].  

The objective of  this communication is to show 
that the kinetic data from many of the above 
investigators fit a linear rate law initially, followed 
by slower kinetics (in most cases). The results will 
be correlated with possible rate-determining 
mechanisms. This communication re-analyses 
previously published data on the per cent ni- 
tridation of Si as a function of time. The kinetics 
are determined from the time exponents n and rn 
for a general exponential relation and nucleation/ 
growth relation [10] in Equations 1 and 2, re- 
spectively, as shown below: 

X = k i t  n (1) 

Vv = 1 - - e x p - - k 2 t  m, (2) 

where X is the weight per cent SiaN4 formed in 
time t, kl and k2 are constants, V v is the volume 
per cent Sia N4 formed in time t. In Equation 1 n is 
calculated from the slope of the data on log X-log 
t graphs. On rearranging Equation 2 and taking 
the double (natural) logarithm of 1/(1 -- Vv) the 
slope rn is determined. 

The plotted data and calculated slopes are 
shown in Figs. 1 to 4. These plotted data were 
taken from both experimental data points and 
smoothed kinetic curves. The slopes were deter- 
mined from linear regression curves fitted to the 
data points. The correlation coefficients of the re- 
gression lines were 1>0.99. The 95% confidence 
intervals of the slopes were typically less than 
+ 15% of the calculated values. 

The results of the curve fitting indicate that the 
initial kinetics follows an approximately linear 
rate law (n -~ 1) for at least 5 to 25% nitridation. 
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Figure 1 Plot of log X versus log t for Popper and 
Ruddlesden [2]. 
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Figure 2 Plot of log X versus log t for v (Billy [3]) and o, 
zx D (Messier and Wong [71). 

For longer times, in Figs. 1 t o  3, the kinetics 
usually slows down to either an approximately 
parabolic (n ~ 0.5) or diminishing rate (n <~ 0.5). 
The nucleation/growth relation in Equation 2 fits 
the data in Fig. 3. This also fits other investigator's 
[2, 7] data in Figs. 1 and 2. Although not shown, 
the diminishing rate data in Figs. 1 to 3 could be 
fitted by linear curves when plotted as a logarithmic 
function, e.g. X versus log (t + 1). 

The linear rate law (n = 1) has been correlated 
with the following mechanisms: N2 gas transport 
to the Si particle surfaces [6, 11], gas-solid 
phase-boundary reaction [5, 12], growth of Si3 N4 
nuclei [8, 9] and growth of whiskers [13]. The 
gas-transport mechanism may be rate-controlling 
for the fine particle sizes, e.g. 3 to 11/.tm Si in 
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~,, Figure 3 Simultaneous plots of log X and log log 
(1/1 -- V v) versus log t for Atkinson etal. [8]. 
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Figure 4 Simultaneous log-log plots of nitride 
thickness and weight gain versus time for % o 
(Huttinger [4 ] ) and u (Huttinger [5 ] ). 
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Fig. 4, where small pore diameters restrict N2 
penetration into the powder compact [11]. 
However, since most of the presented data are 
based on coarser particle sizes, gas transport 
probably is not rate-controlling. 

The phase-boundary reaction can occur due to 
gas adsorption or molecular dissociation at the 
particle surfaces. The dependence of the nitriding 
kinetics on PN~ (Fig �9 3) in the range 128 to 
400Torr [8, 9] is consistent with Langmuir 
adsorption. Adsorption has been reported [5] to 
be dominant in the nitriding of single-crystal 
Si (Fig. 4). Also, since the initial oxidation of 
single-crystal Si [14] has been observed to occur 
by gas adsorption without molecular dissociation, 
N2 adsorption is expected to be rate-controlling 
if nitridation and oxidation occur by similar 
mechanisms. 

Classical nucleation and growth models have 
been developed for Equation 2 according to 
Fine [10] to explain various experimentally 
determined rn values. For example, by assuming 
instantaneous Sis N4 nucleation on Si particle 
surfaces and diffusion-controlled radial growth 
of disc-shaped nuclei of constant thickness, a 
value o f m  = 1 is obtained. Also, one-dimensional 
growth of thin Si3N4 whiskers extending into 
pores (where long-range diffusion is not required), 
either by vapour transport or a vapour-l iquid- 
solid mechanism [13] yields a linear growth rate. 
Other models for combined nucleation and growth 
give m :> 1 [10] and are not compatible with 
experimental observations [8, 9]. 

The parabolic rate low (n ~- 0.5) in Figs. 1 and 
2 can be explained by two mechanisms: thickening 
of Sis N 4 nuclei and radial growth of a surface 
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layer on the Si particle surfaces. For instantaneous 
nucleation of SiaN4 and one-dimensional dif- 
fusion-controlled growth of the disc-shaped 
nuclei, the thickness has been shown to give m = 
0.5 [10], Also radial diffusion-controlled growth 
o f  a SiaN4 mat or surface layer on Si particles has 
been reported to obey Janders' relation [151 for 
n = 0 .5  [ 7 ] .  

The diminishing kinetic rate ( n < 0 . 5 )  in 
iFigs. 1, 2 a n d 3  may be due to Si3N4 nuclei 
growth impingement [9]. The radial disc growths 

o f  Si3N4 nuclei (for m = 1) eventually impinge 
upon each other, "choking-off" the kinetics and 
reducing the rate law. Also, microcracks caused by 
the ~ 22% volume expansion during the phase 
transformation S i~  Si3N4 [6], can act as dif- 
fusion barriers to reduce the kinetics, yielding a 
logarithmic rate law [16]. 

At present, it is difficult to generalize about 
which mechanisms are rate-controlling during each 
stage of the nitriding kinetics. The difficulty arises 
due to investigators using different particle size 
distributions, green densities, Si powder purities, 
N 2 gas purities and sources of gas impurities (e.g. 
oxygen) in the furnace. Nevertheless, the initial 
nitriding kinetics can be consistently described 
by an approximately linear rate law, which sub- 
sequently is followed by multi-stage rate laws. 
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Comments on "A model o f  fatigue crack 
growth in polymers" 

Williams has proposed an interesting model to 
describe fatigue crack propagation (FCP) in poly- 
meric solids and to account for a number of exper- 
imental observations [1]. The purpose of this 
communication is to (1) examine the basic assump- 
tions underlying the model, (2) compare recent 
data with values predicted from the model, and (3) 
present alternative explanations for polymer fatigue 
behaviour. 
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The first assumption is that upon unloading 
and reloading a craze at the crack tip, some of the 
craze ligaments become damaged, thereby reducing 
the craze stress o e. From this a two-stage craze 
zone is envisioned in which the newly formed 
craze material at the craze tip experiences a stress 
oe while the remaining part of the craze sustains 
a lower stress, se  e. Use of this assumption leads to 
values of ee and s e  e for several polymers in the 
ranges 325 to 720 and 29 to 2016MPa, respect- 
ively (see Table II in [1] and [2]). In contrast, use 
of the Dugdale plastic strip formulation leads to 

0022-2461/79/071754-05 $2.50/0 �9 1979 Chapman and Hall Ltd. 


